Dr. Ahmed G. Abo-Khalil

Electrical Engineering Department

Electrody. suspens

In electrodynamic suspension (EDS), both the guideway and the train exert a magnetic field, and the train is levitated by the repulsive and attractive force between these magnetic fields. In some configurations, the train can be levitated only by repulsive force. In the early stages of [[JR–Maglev]] development in Miyazaki test track, a repulsive system was used, instead. This fact sometimes causes conception that the EDS system is a repulsive one, but that is not true. The magnetic field in the train is produced by either superconducting magnets (as in JR–Maglev) or by an array of permanent magnets (as in Inductrack). The repulsive and attractive force in the track is created by an induced magnetic field in wires or other conducting strips in the track. A major advantage of the EDS maglev systems is that they are naturally stable – minor narrowing in distance between the track and the magnets creates strong forces to repel the magnets back to their original position, while a slight increase in distance greatly reduces the repulsive force and again returns the vehicle to the right separation. In addition, the attractive force varies in the opposite manner, providing the same adjustment effects. No feedback control is needed.

EDS systems have a major downside as well. At slow speeds, the current induced in these coils and the resultant magnetic flux is not large enough to support the weight of the train. For this reason, the train must have wheels or some other form of landing gear to support the train until it reaches a speed that can sustain levitation. Since a train may stop at any location, due to equipment problems for instance, the entire track must be able to support both low-speed and high-speed operation. Another downside is that the EDS system naturally creates a field in the track in front and to the rear of the lift magnets, which acts against the magnets and creates a form of drag. This is generally only a concern at low speeds (This is one of the reasons why JR abandoned repulsive system and adopted sidewall levitation system.); at higher speeds the effect does not have time to build to its full potential and other forms of drag dominate.

The drag force can be used to the electrodynamic system's advantage, however, as it creates a varying force in the rails that can be used as a reactionary system to drive the train, without the need for a separate reaction plate, as in most linear motor systems. Laithwaite led development of such "traverse-flux" systems at his Imperial College laboratory. Alternatively, propulsion coils on the guideway are used to exert a force on the magnets in the train and make the train move forward. The propulsion coils that exert a force on the train are effectively a linear motor: an alternating current through the coils generates a continuously varying magnetic field that moves forward along the track. The frequency of the alternating current is synchronized to match the speed of the train. The offset between the field exerted by magnets on the train and the applied field creates a force moving the train forward.

Office Hours

Monday 10 -2

Tuesday 10-12

Thursday 11-1

My Timetable


email: a.abokhalil@mu.edu.sa


Phone: 2570


Welcome To Faculty of Engineering

Almajmaah University


Institute of Electrical and Electronics Engineers






Links of Interest





القران الكريم


Travel Web Sites





Photovoltaic Operation

Wave Power

World's Simplest Electric Train


homemade Aircondition

Salt water battery

إحصائية الموقع

عدد الصفحات: 2879

البحوث والمحاضرات: 1292

الزيارات: 41525