Dr. Ahmed G. Abo-Khalil

Electrical Engineering Department

Microwave

Microwaves are radio waves with wavelengths ranging from as long as one meter to as short as one millimetre, or equivalently, with frequencies between 300 MHz (0.3 GHz) and 300 GHz.[1] This broad definition includes both UHF and EHF (millimeter waves), and various sources use different boundaries.[2] In all cases, microwave includes the entire SHF band (3 to 30 GHz, or 10 to 1 cm) at minimum, with RF engineering often putting the lower boundary at 1 GHz (30 cm), and the upper around 100 GHz (3 mm).

Apparatus and techniques may be described qualitatively as "microwave" when the wavelengths of signals are roughly the same as the dimensions of the equipment, so that lumped-element circuit theory is inaccurate. As a consequence, practical microwave technique tends to move away from the discrete resistors, capacitors, and inductors used with lower-frequency radio waves. Instead, distributed circuit elements and transmission-line theory are more useful methods for design and analysis. Open-wire and coaxial transmission lines give way to waveguides and stripline, and lumped-element tuned circuits are replaced by cavity resonators or resonant lines. Effects of reflection, polarization, scattering, diffraction, and atmospheric absorption usually associated with visible light are of practical significance in the study of microwave propagation. The same equations of electromagnetic theory apply at all frequencies.

The prefix "micro-" in "microwave" is not meant to suggest a wavelength in the micrometer range. It indicates that microwaves are "small" compared to waves used in typical radio broadcasting, in that they have shorter wavelengths. The boundaries between far infrared light, terahertz radiation, microwaves, and ultra-high-frequency radio waves are fairly arbitrary and are used variously between different fields of study.

Electromagnetic waves longer (lower frequency) than microwaves are called "radio waves". Electromagnetic radiation with shorter wavelengths may be called "millimeter waves", terahertz radiation or even T-rays. Definitions differ for millimeter wave band, which the IEEE defines as 110 GHz to 300 GHz.

Above 300 GHz, the absorption of electromagnetic radiation by Earth's atmosphere is so great that it is in effect opaque, until the atmosphere becomes transparent again in the so-called infrared and optical window frequency ranges.


Office Hours

Monday 10 -2

Tuesday 10-12

Thursday 11-1

My Timetable

Contacts


email: [email protected]

[email protected]

Phone: 2570

Welcome

Welcome To Faculty of Engineering

Almajmaah University

IEEE

Institute of Electrical and Electronics Engineers

http://www.ieee.org/

http://ieeexplore.ieee.org/Xplore/guesthome.jsp

http://ieee-ies.org/

http://www.ieee-pes.org/

http://www.pels.org/

Links of Interest

http://www.utk.edu/research/

http://science.doe.gov/grants/index.asp

http://www1.eere.energy.gov/vehiclesandfuels/

http://www.eere.energy.gov/


القران الكريم

http://quran.muslim-web.com/

Travel Web Sites

http://www.hotels.com/

http://www.orbitz.com/

http://www.hotwire.com/us/index.jsp

http://www.kayak.com/

Photovoltaic Operation


Wave Power

World's Simplest Electric Train



PeltierModule-JouleThief-Fridge

homemade Aircondition

Salt water battery


إحصائية الموقع

عدد الصفحات: 2880

البحوث والمحاضرات: 1292

الزيارات: 46860