Dr. Ahmed G. Abo-Khalil

Electrical Engineering Department

Planck constant

The Planck constant (denoted h, also called Planck's constant) is a physical constant reflecting the sizes of energy quanta in quantum mechanics. It is named after Max Planck, one of the founders of quantum theory, who discovered it in 1900. Classical statistical mechanics requires the existence of h (but does not define its value).[2]

The Planck constant was first described as the proportionality constant between the energy (E) of a photon and the frequency (ν) of its associated electromagnetic wave. This relation between the energy and frequency is called the Planck relation or the Planck–Einstein equation:

E = h
u ,.

Since the frequency 
u, wavelength λ, and speed of light c are related by λν = c, the Planck relation can also be expressed as

E = frac{hc}{lambda}.,

In 1923, Louis de Broglie generalized this relation by postulating that the Planck constant represents the proportionality between the momentum and the quantum wavelength of not just the photon, but any particle. This was confirmed by experiments soon afterwards.

Planck discovered that physical action could not take on any indiscriminate value. Instead, the action must be some multiple of a very small quantity (later to be named the "quantum of action" and now called Planck's constant). This inherent granularity is counterintuitive in the everyday world, where it is possible to "make things a little bit hotter" or "move things a little bit faster". This is because the quanta of action are very, very small in comparison to everyday human experience. Thus, on the macro scale quantum mechanics and classical physics converge. Nevertheless, it is impossible, as Planck found out, to explain some phenomena without accepting that action is quantized. In many cases, such as for monochromatic light or for atoms, the quantum of action also implies that only certain energy levels are allowed, and values in between are forbidden.[3] In applications where frequency is expressed in terms of radians per second ("angular frequency") instead of cycles per second, it is often useful to absorb a factor of 2π into the Planck constant. The resulting constant is called the reduced Planck constant or Dirac constant. It is equal to the Planck constant divided by 2π, and is denoted ħ ("h-bar"):

hbar = frac{h}{2 pi}.

The energy of a photon with angular frequency ω, where ω = 2πν, is given by

E = hbar omega.

Office Hours

Monday 10 -2

Tuesday 10-12

Thursday 11-1

My Timetable


email: a.abokhalil@mu.edu.sa


Phone: 2570


Welcome To Faculty of Engineering

Almajmaah University


Institute of Electrical and Electronics Engineers






Links of Interest





القران الكريم


Travel Web Sites





Photovoltaic Operation

Wave Power

World's Simplest Electric Train


homemade Aircondition

Salt water battery

إحصائية الموقع

عدد الصفحات: 2879

البحوث والمحاضرات: 1292

الزيارات: 41469