Dr.g. alsaid

أستاذ الكيمياء الحيوية المشارك


Structural Biochemistry/Carbohydrates/Monosaccharides

Jump to: navigation, search



Monosaccharides are the simplest form of carbohydrates and may be subcatagorized as aldoses or ketoses. The sugar is an aldose if it contains an aldehyde functional group. A ketose signifies that the sugar contains a ketone functional group. Monosaccharides may be further classified based on the number of carbon atoms in the backbone, which can be designated with the prefixes tri-(3), tetr-(4), pent-(5), hex-(6), hept-(7), etc in the name of the sugar.

Monosaccharides are often represented by a Fischer Projection, a shorthand notation particularly useful for showing stereochemistry in straight chained organic compounds. The L and D confirmations represent the absolute configuration of the asymmetric carbon farthest away from the ketone or aldehyde group on the monosaccharide. On the Fischer projection, if the farthest hydroxyl(-OH) group is on the right, then it is classified as D sugar, if the hydroxyl group is on the left, then it is a L sugar. All natural sugars have are D sugars.

Enantiomers, Diastereoisomers, and Epimers

Example of Diastereomers. The areas marked blue indicate the differing stereogenic centers.
Example of an Enantiomer. The blue indicates the D-isomer and the red indicates the L-isomer

Due to the fact that carbohydrates contain multiple stereocenters, many isomers are possible including enantiomers, diastereoisomers, and epimers.

Two carbohydrates are said to be enantiomers if they are nonsuperimposable mirror images of one another. An example of an enantiomer is the D and L isomers of glucose, as shown by the figure to the right.

A second type of isomer seen in carbohydrates are diastereoisomers. Carbohydrates are classified as diastereomers if their chiral carbons are connected to the the exact same substrates but connected at differing configurations (R or S). Unlike an enantiomer, diastereomers are NOT object and mirror image. An example of two carbohydrates that are diastereoisomers are D-Glucose and D-Altrose as seen in the figure to the left.

Lastly, another type of isomer that carhbohydrates that can take on are epimers. Epimers are two diastereomers that differ only at one stereocenter.[1] As shown in the figure below, D-Glucose and D-Mannose are an example of an epimer.

Example of Epimers. The area marked blue indicate the differing stereogenic center

Simple Aldoses

An Aldose contains an aldehyde with two or more hydroxyl groups attached; one of the hydroxyl groups is at end opposite to the aldehyde. An Aldose is a type of monosaccharides, which is a chiral molecules that plays a key role in the development of nucleic acids. The two simplest forms of Aldoses are L- and D-Glyceraldehydes, which are three-carbon structures that each contain one aldehyde and two hydroxyl groups. The L and D symbols apply to the two different configurations of the asymmetric carbon farthest from the aldehyde group. Aldoses can have three or more carbons. Aldoses are distinguishable by the carbonyl(C=O) group located at the end of the carbon chain, which differs from ketose, which has the carbonyl group in the middle of the carbon chain. Furthermore, for example, the simplest sugar with three carbons - glyceraldehyde (containing an aldehyde group), and sugar with seven carbons - L-glycero-D-manno-heptose, can be found in this category. Each sugar have n = C - 2 numbers chiral center(s), where C is the number of carbons. We can also use the formula 2n to calculate the maximum number of stereoisomers that are possible to exist in a molecule. Again, n is the number of stereocenter(s). For example, aldotriose has three carbons(C), one stereocenter(n) - it has two stereoisomers. Following the same calculation, we know that aldotetroses have four stereoisomers, aldopentoses have eight stereoisomers, and aldohexoses have 16 stereoisomers. We usually focus on the D sugars since they are more frequently exist in natural existence, while the L sugars, diastereomer of the D sugars, are less common. See Chirality for the naming using D/L system.

List of common aldoses


Trioses are monosaccharides with three carbon atoms and aldotrioses have an aldehyde functional group at carbon number one. A common type of aldotrisoses is D- and L- glyceraldehydes which are enantiomers of one another. Glyceraldehydes are one of the smallest monosaccharides. It has a single asymmetric carbon atom and it has two stereoisomers.

Example of Tetroses

Tetroses are monosaccharides with four carbon atoms. An aldotetrose has an aldehyde functional group at carbon number one.

The two common types of aldotetroses are D-Erythose and D-Threose. The D configuration is more favor. Since D-Erythose and D-Threose are not mirror image of one another, they are diasteroisomers of one another. They have a different configuration at the third carbon. They have two asymmetric carbons and four steroisomers.


A Pentose is a type of monosaccharide which has a backbone of five carbon atoms. At carbon position 1, there is an aldehyde functional group attached which gives it their aldose nature.

Common types of 5-Carbon Aldoses include Ribose, Arabinose, Eibose, Lyxose, and Xylose

Examples of hexose
D-Glucose Fischer projection and Haworth projection

A hexose is a monosaccharide with six carbons, but more specifically, an aldohexose is a hexose with an aldehyde functional group at carbon number one.

Some common aldohexoses are Allose, Altrose, Galactose, Glucose, Gulose, Idose, Mannose, Talose. 8HexoseMolecules.jpg

A trick to remember names and structures of hexose in D-aldose configuration:
1. Use a sentence "All altruists gladly make gum in gallon tanks" to write down in order allose, altrose, glucose, mannose, gulose, idose, galactose, talose.
2. Draw Fisher projections for those hexoses with C-1 is -CHO group, C-6 is _CH2OH

3. Now we add the OH group, start from C-5 and from allose to Talose (from left to right):
a. at C-5 : all -OH will be attached on the right
b. at C-4: -OH will be attached on the right for the first 4 hexose (allose to mannose), and -OH will be attached on the left for the last 4 hexose (Gulose to Talose)
c. at C-3: 2 right, 2 left, 2 right, 2 left
d. at C-2: right, left, right, left, and so on.

Cyclic Monosaccharides

The alpha and beta Haworth projections of D-Glucose
Axial (a) and equatorial (e) positions in chair (eft structure) and boat (right structure) conformations of a six-membered ring

Alodopentoses and aldohexoses can exist in three different forms: the open chain as appear in the Fisher projection, the two cyclic forms of alpha(α) sugar and beta(β) sugar. Ring formation tends to be energetically more stable than open chains. Pentoses often cyclize into a ring form structure called Furanose whereas hexoses form cyclic sugars called pyranoses. The two different forms of cyclic sugars, alpha and beta, are referred to as anomers. For example, in D-glucose, the hydroxy group on carbon 5 attacks the carbonyl carbon forming a six membered ring with the carbon that was attacked being known as the anomeric carbon. The resulting hemiacetal sugar is known as a pyranose. α-D-glucose is formed if the newly formed hydroxyl group is pointed in an opposite direction to the CH2OH group in Haworth projection, and β-D-glucose is formed if the hydroxyl group is pointed in the same direction as the CH2OH group. The majority, about 66% of D-glucose exist in β form because when the molecule is in chair conformation, all the bulky hydroxyl groups will be placed in equatorial position - which have lesser steric hindrance between the bulky groups. Thus, β-D-glucose is more stable than α-D-glucose that occupied typically 33% of D-glucose molecules, whereas the remaining 1% is in the open-chain form.

There are two different conformations a pyranose and furanose ring can take: chair and boat form. In the chair form there are two different orientations: equatorial and axial positions. In the axial position, the substituents will form bonds that are perpendicular to the plane of the ring. However, these bonds may often form a steric hindrance due to crowding of the substituents. If two substituents are near and pointing within the same direction, then there will be a steric hindrance. In contrast, the equatorial position will have its substituents to form bonds that are parallel to the plane of the ring. This formation produces less crowding and is the most preferred form for the chair conformation. Lastly, the boat form is unlikely due to the fact that there is crowding and steric hindrance.

Haworth Projection

A Haworth projection is a simple way to show cyclic sugars and their glycosidic linkages. It consists of the ring on a horizontal plane but ignores the chair and boat forms so that the ring is flat. If drawn from a Fischer projection with the carbonyl on top, the groups on the right side become the groups on the bottom of the ring and the groups on the left become the groups on the top. The carbon at the very bottom of the Fischer projection is placed on top of the ring by default (if it is not a part of the ring itself). An α-linkage occurs when the hydroxyl of the hemiacetal is on the bottom of the right and a β-linkage occurs when the hydroxyl is on top.


If drawing from a chair form, all groups on top of the chair become the groups on top of the Haworth projection ring. The easiest way to find all these groups is to choose an axial position that is above the ring and then go around the ring, alternating axial and equatorial positions. In the picture on the right, all the groups attached to red bonds would go on top of the ring the Haworth projection and all the groups attached to the blue bonds would go below.

Simple Ketoses

A ketose is a sugar that has a ketone group in each of its molecule. Dihydroxyacetone, for example, has 3 carbon atoms in its backbone - it is the simplest ketose among this category. It is also the only optically inactive ketose. In comparison to other aldoses, ketones will have one less chiral carbon than aldoses even though they share the same number of carbon atoms. Thus, when forming a ring, the ketone at the second carbon will be utilized to form a ring.

Similar to aldoses, furanose rings can take up a different conformation than a ring. The other conformation is called the envelope form: C3-endo and C2-endo. Both forms resembles an envelope.


List of common ketoses

Triose: A triose contain 3 carbon, and ketotriose contains a ketone functional group. A ketotriose has no chiral center and one stereoisomers. An example of ketotriose is Dihydroxyacetone. Dihydroxyacetone has many uses, and it is non-toxic. Many creams had Dihydroyactenone as an active ingredient. Dihydroxyacteone is also known as DHA. It is also use for suntanning. (Chemical and Engineering News)


Tetrose: Erythrulose A Tetrose is a monosaccharide that contains 4 carbon atoms. A Keto-tetrose is a tetrose that has a ketone functional group attached to Carbon 2 of the straight chain. A ketotetrose has 2 stereoisomers because it has one chiral center. An example of a ketotetrose is Erythrulose. Erythrulose has the chemical formula of C4H8O4. It is often used in self-tanning products.

Examples of Ketopentoses

Pentoses: Ribulose, Xylulose A Pentose is a general term to define a monosaccharide containing five carbons. When there is the prefix "keto" in front of the pentose, it means that in five carbon containing sugar, there is a ketone functional group attached to the structure. A ketopentose has a total of four stereoisomers. An example of a ketopentose is Ribulose. The structure of Ribulose has a ketone functional group attached to C-2 of the straight chain figure. The diastereomer of D-Ribulose is D-Xylulose.

Hexoses: A Hexoses contains 6 carbons. A hexoses containing a ketone functional group is called ketohexose. Ketohexose has 3 chiral centers and 8 different stereoisomers. Examples of ketohexose are Fructose, Psicose, Sorbose, Tagatose. Fructose can react wtih hydroxyl group to form a hemiketal group, and it can formed pyranose or furanose depending on whether the C-2 keto group reacts with the C-6 or C-5 hydroxyl group. D-Fructose is the most common ketohexose. Examples of Ketohexose

Ketoses in Reactions

Transketolase Reaction

The Transketolase reaction is very similar to the Transaldolase reaction. However, the Transketolase is different because it transfers a two carbon unit instead of Transaldolase's three carbon unit. Thiamine pyrophospate (TPP) ionizes so that it has a carbanion which is a negatively charged carbon. The importance of carbanion is that they can attack carbonyls, so that carbons are added in a sense to the nucleophile. TPP attacks a ketose substrate where it than releases the aldose product to yield an activated glycoaldehyde unit. An activated glycoaldehyde unit is an electron sink because of a positively charged nitrogen atom where a carbonyl of an aldose product is attacked and then seperated after some electron movement. The importance of the transketolase reaction is that it is the mechanism that the enzyme TPP uses to change a ketose substrate to a ketose product that has a different group attached to it.

Transaldolase Reaction

The transaldolase reaction involves the transfer or a three carbon dihydroxyacetone unit from a ketose donor to an aldose acceptor. Unlike the transketolase reaction, transaldolase does not contain a prosthetic group; instead the reactions begins with a Schiff base formed between the carbonyl group of the ketose substrate and the amino group of a lysine residue at the active site of the enzyme. Next the Schiff base is protonated and the bond between C-3 and C-4 break which releases the aldose product. The leftover negative charge on the Schiff-base carbanion is stabilized by resonance while the positive charge on the nitrogen atom of the protonated Schiff base acts as the electron sink. The Schiff-base remains stable until a suitable aldose becomes bound which allows the dihydroxyacetone to react with the carbonyl group of the aldose and the ketose product is released from the lysine side chain via hydrolysis of the Schiff-base.

Transaldolase is a target of autoimmunity in patients with multiple sclerosis which is the selective destruction of oligodendrocytes that selectively expresses transaldolase in the brain.

Ketose in the Calvin Cycle

The Calvin cycle, or dark reactions, is one of the light-independent reactions. In the third phase of the this reaction, a five-carbon sugar is constructed from six-carbon and three-carbon sugars. A transketolase and an aldolase are the major factors in the rearrangement. The transketolase, which is in the pentose phosphate pathway, requires a coenzyme, thiamine pyrophosphate (TPP), to transfer a two-carbon unit from a ketose to an aldose. Whereas the transaldolase transfers a three-carbon unit from a ketose to an aldose.

In summary, transketolase first converts a six-carbon sugar and a three-carbon sugar into a four-carbon sugar and a five-carbon sugar. Then, aldolase combines the four-carbon product and a three-carbon sugar to form the seven-carbon sugar. This seven-carbon sugar then finally reacts with another three-carbon sugar to form two additional five-carbon sugars.

Energy for Organic Organisms

Glucose (C6H12O6) is one of the main products of the photosynthetic process by plants that initiates the cellular respiration process that produces ATP (adenosine triphosphate), the basic energy currency for prokaryotes and eukaryotes. Glucose is alsoinvolved in the energy-harvesting process of glycolysis, which converts glucose into pyruvate and yields a much lesser amount of ATP than is produced by the electron transport chain within cellular respiration. Glucose is an essential source of energy for the body.

Modified monosaccharides

Modified monosaccharides.png

One example of modified monosaccharides are the phosphorylated sugars. An important phosphorylated sugar is glucose 6-phosphate, which is a glucose phosphorylated on carbon 6. The significance of this molecule is that it provides energy in certain metabolic pathways, and it can be converted and stored as glycogen when blood glucose levels are high. If blood glucose levels are low, glucose 6-phosphate can be converted back into glucose to enter the bloodstream once again. A unique property of glucose 6-phosphate is that once glucose is phosphorylated, the sugar possesses a negative charge. This prevents the molecule from leaving the lipid-bilayer membranes. This allows the cell to easily access the modified sugar to provide energy for metabolic pathways such as glycolysis, or convert it to glycogen as storage.

Importance of Carbohydrates in Nature

The biological significance of carbohydrates is unquestionable in the natural world with its essential roles in providing metabolic energy. Carbohydrates not only serve roles in energy storage and plant cell wall structure; however carbohydrates are also involved in a variety of biological processes including the immune response, cell–cell interactions, fertilization, viral infection, and drug efficacy, among others. In recent years, researchers are discovering and understanding new sugar moieties that may have important ramifications for the development of new therapeutics. For example, the dideoxysugar and trideoxysugar moieties that are synthesized by a wide range of bacteria, fungi, and plants are representation of a captivating class of carbohydrates. They are found on the lipopolysaccharides, on the S-layers of some Gram-positive and Gram-negative bacteria, on extracellular polysaccharides, and on antibiotic, antifungal, anthelminitic, and antitumor agents. These diverse complex carbohydrates are derived from simple monosaccharides such as glucose-6-phosphate or fructose-6-phosphate that goes through numerous of enzymatic reactions including acetylations, aminations, dehydrations, epimerizations, reductions, and methylations. The bacterial N-acetyltransferases and the PLP-dependent aminotransferases are enzymes for the biosynthesis of unusual dideoxysugars and trideoxysugars. With the understanding of the structures and the functions of these enzymes that are required for the biosynthesis of the sugars, this makes it possible to redesign new drugs that will only benefit humans because these sugar moieties are only synthesized in bacteria, fungi and plants.


Berg, Jeremy M. John L. Tymoczko. Lubert Stryer. Biochemistry Sixth Edition. New York: W.H. Freeman, and Company 2007.

Chemical and Engineering News. http://pubs.acs.org/cen/whatstuff/stuff/7824scit2.html/ carbohydrates are synthesize by energy process that is photosynthesis which is take place in green plants in presence of co2+h2o .splar energy in green pigments that is chlorophylland this process is called photosynthesis

قناتى على اليوتيوب

ارقام الاتصال ومواقعي الشخصية

أرقام الاتصال

IP: 3843

Solar Energy System

E.mail:  [email protected]

علمتنى الكيمياء ان أعشقها دون كل العلوم فلقد جذبتنى بروابط حبها القوى وهى فى نظرى ملكة كل العلوم ،علمتنى واقعية الخيال فهناك أشياء لانراها ولكنها موجودة .علمتنى سموالعلاقات الأنسانية فهى معادلة متو ازنة فمن نعطيهم الحب النقى يبادلوننا نقاء الحب ومن نعطيهم الثقة يبادلوننا الأخلاص  ،علمتنى الأشكال المتعددة للمركبات ان للناس وجوه عديدة فعلينا أن نحرص من نختار فيالها من مادة عجيبة فالبحث بدواخلها عجيب ومفيد

تواصل معنا

البريد الألكترونى

My facebook

الساعات المكتبية

الساعات المكتبية

:المحاضرة الثالثة والرابعة

الأربعاء :الرابعة والخامسه

إستبانه تقرير مقرر حيويه 2

إستبانه خبره الطالبه

استبانة الارشاد الاكاديمى لقسم الكيمياء

استبانه تقويم برنامج

مواقع صديقه

مواقع تهمك

مواقع تهمك

أعلان هام

***مجلس القسم يوم الأحدمن كل أسبوع  فى الساعة التاسعة وأربعين دقيقة.

***على جميع طالبات قسم الكيمياء مراجعة جدول الأختبارات النهائية للفصل الدراسى الأول للعام الجامعي 1435/1436هـ مع ابداء الملاحظات في أسرع وقت ممكن .

***على جميع طالبات قسم الكيمياء مراجعة المرشدة الاكاديمية الخاصة بها .

على جمي طالبات قسم الكيمياء الراغبات في الفصل الصيفي التوجه لتسجل اسمائهن لدى مشرفة القسم .

Click here to enlarge

بفيض من الحب والتقدير أتقدم بخالص الشكر والامتنان  لعضوات قسم الكيمياء من أعضاء هيئة تدريس وأداريات لما بذلوه من جهود مباركةفى التقدم للجاهزية للأعتماد .ودائما فى تقدم .

وفقكم الله .


اعلان دورات تدريبية

دعوة معرض قسم الكيمياء 1433/1434هـ

المعرض الثانى لقسم الكيمياء 1433/1434هـ ألوان من الكيمياء

معرض الكيمياء 1432/1433هـ

البرامج الأكثر جاهزيه

زياره فريق الجوده لقسم الكيمياء

ملفات الجودة بقسم الكيمياء

كلية التربية بالزلفى

تويتر كلية التربية بالزلفي


facebook للجامعة

facebook تربية الزلفي

you tube


BBC Arabic

وحدة الخريجات بقسم الكيمياء

تلميذاتى العزيزات ارجو التواصل بصفة مستمرة مع القسم

وحدة الخريجات بالقسم هدفها

· مساعدة الخريجات فى الحصول على وظائف تتناسب مع تخصصاتهن .

· مساعدة قطاعات العمل الباحثة عن موظفات فى الوصول الى الخريجات بسهولة ويسر .

· تأهيل الخريجات للأنخراط فى سوق العمل من خلال عقد دورات تدريبية فى مجالات مختلفة .

· تسويق أبحاث الطالبات .

· أرشاد الطالبات الجدد فى أختيار التخصص المناسب والخريجات فى كيفية الاستعداد لللبحث عن وظيفة  ....هدفنا خدمتكم

ارجو من لديها أى اقتراحات التواصل على الايميل التالى

[email protected]

د.جيهان العميرى

عمادة الجودة وتطوير المهارات

عمادة شؤون أعضاء هيئة التدريس والموظفين

مواقع أعضاء هيئة التدريس

عمادة الدراسات العليا

عمادة التعليم الالكترونى والتعلم عن بعد

نظام جسور لإدارة التعلم الالكترونى

المركز الوطنى للتعلم الالكترونى

المؤتمر الرابع للتعليم الالكتروني

عمادة شؤون الطلاب

عمادة المكتبات

المكتبة الرقمية السعودية

عمادة تقنية المعلومات بجامعة المجمعة

عمادة البحث العلمى

عمادة خدمة المجتمع والتعليم المستمر

عماده القبول والتسجيل

بوابة النظام الاكاديمى

نماذج الكترونية

دليل منسوبى جامعة المجمعة

موقع محافظة الزلفى


ويكيبيديا، الموسوعة الحرة

الكيمياء الحيوية والتغذية


مهرجان فاكهتى بكلية التربية بالزلفى

قسم الكيمياء

مهرجان الزهور بكلية التربية بالزلفى

معرض الكيمياء بقسم الكيمياء الحيوية

أخلاقيات المهنة


اللهم يا رحمن يا رحيم يا سميع يا عليم يا غفور يا كريم إني أسألك بعدد من سجد لك في حرمك المقدس من يوم خلقت الدنيا إلى يوم القيامة أن تبارك في عمر قارئ هذا الدعاء وتعينه على العمل الصالح وان تحفظ أسرته وأحبته وان تبارك عمله وتسعد قلبه وأن تفرج كربه وتيسر أمره وأن تغفر ذنبه وتطهر نفسه وان تبارك سائر أيامه وتوفقه لما تحبه وترضاه اللهم أمين يارب العالمين .)))))


شهادات الشكر والتقدير


قد لا أكون....الأجمل

قد لا أكون.....الأروع

قد لا أكون.....الأذكى
... ... ... ... ... ... ...
قد لا أكون......الأبرع

ولكني..... إذا جائني المهموم.... أسمع

وإذا ناداني صاحبي لحاجة..... أنفع

وحتى إذا حصدت شوكاً فسأظل.... للورد أزرع

Good FRIENDS are hard to find, harder to leave, and impossible to forget


Good friends are like STARS You don't always see them, but you know they are ALWAYS
الأصدقاء الحقيقيون كالنجوم ، لا تراها دوما ؛ لكنك تعلم أنها موجودة في السماء

الصداقة ود وإيمان
الصداقة حلماً وكيان يسكن الوجدان
الصداقة لاتوزن بميزان ولاتقدر بأثمان
فلابد منها لكل إنسان

الحمد لله



كن مع الناس

روى أبو هريرة رضي الله عنه أن النبي صلى الله عليه وسلم ُسئل :

" ما أكثر ما يدخل الناس الجنـة ؟

قال : تقوى الله وحُسن الخُلق "

وقال : ( اتق الله حيثما كنت وخالق الناس بخلق حسن )

وقال : ( المؤمن يألف ويؤلف ولا خير فيمن لا يألف ولا يؤلف وخير الناس أنفعهم للناس )

إن هذه الوصايا الجامعة وما يجري مجراها لتشير إلى أهمية التعامل الحسن مع الآخرين و ترفع من
شأن الخلق الفاضل في الدنيا والآخرة..
فهي تجعل للإحسان إلى الناس غاية هي : الفوز برضوان الله جل شأنه ..
كما تبين سبيله وهو الخلق الفاضل الذي يُدرك بتعلم آداب التعامل مع الآخرين .. والعمل بها.
وتبشر صاحبتها بثمرته العاجلة : التي تتجلى في صحة علاقاتها الاجتماعية ،
وتقوية الروابط القلبية بينها وبين المحيطين بها.. وتخليد الانطباعات الجميلة عنها في نفوس الآخرين ..

الرجوع الى أعلى الصفحة

كلمات مطلوبة


اذا سجدت فأخبره بأسرارك
ولا تـُسمع من بجوارك ..
وناجه بدمع عينك ..
..فهو للقلب مالك .

لا تقل : من أين أبدأ ؟!
طاعة الله البداية

لا تقل : أين طريقي !؟
شرع الله الهداية

لا تقل : أين نعيمي ؟!
جنة الله كفاية.

لا تقل : غدا سأبدأ !

ربما تأتي النهاية

دعاء بالحروف

بسم الله الرحمن الرحيم

اللـــــهم أرزقــــــنا

بالألــــف ألفــــــة .. و بالبـــــاء بركــــة
و بالتــــاء توبــــة .. و بالثـــــاء ثوابـــاُ
و بالجيـــم جمـــالاً .. و بالحــــــاء حكمــة
و بالخـــاء خـــــيراً .. و بالــــدال دليلـاً
و بالـــــذال ذكـاء .. و بالــــــراء رحمـــة
و بالـــزاي زكـــاة .. و بالسيـن سعادة
و بالشيــن شفـاء .. و بالصـــاد صـدقاً
و بالضـــاد ضيـاء .. و بالطـــاء طاعــــة
و بالظـــاء ظفـــراً .. و بالعيـن علمـــاً
و بالغيـن غنـــى .. و بالفـــاء فــــلاحاً
و بالقــاف قناعة .. و بالكـــاف كــرامة
و بالــــلام لطفــاً .. و بالميـــم موعظة
و بالنـون نـــوراً .. و بالهـــاء هدايــة
و بالــــــواو وداَ .. و باليــــاء يقينـــاً


ما ابدع خلق الله

أسما ءالله الحسنى

الكيمياء فن وابداع

دعاء مدرس كيمياء

اللهم اجعل تفاعلي مع الحياة تفاعلا حسنا
وهب لي عاملا مساعدا في حياتي
واجعلني عاملا مختزلا للحسنات
ومؤكسدا للشر
وتقبل نشاطي يا كريم

صحيفة تواصل

نادى الكيمياء حياتى

الكيمياء الحيوية

الكشف عن البروتين


هرمون السعادة

عام 1435/1436هـ

Thank You

Click here to enlarge

إحصائية الموقع

عدد الصفحات: 536

البحوث والمحاضرات: 417

الزيارات: 156740