Final Year B.Sc. Degree Examination, March 2009
Part – III : Group – I : MATHEMATICS
Paper IV – Differential Equations, Numerical Analysis and Vectors
(Perior to 2006 Admission)

Time : 3 Hours

Max. Marks : 65

Instruction : Maximum of 13 marks can be earned from each Unit.

UNIT – I

1. Solve \(\frac{dy}{dx} = \frac{y - x + 1}{y - x + 5} \).

2. Show that the equation \((x^2 - 4xy - 2y^2) \, dx + (y^2 - 4xy - 2x^2) \, dy = 0 \) is exact and hence solve it.

3. Find the orthogonal trajectories of the circles \(x^2 + (y - c)^2 = c^2 \).

4. Solve : \((D^2 - 1) \, y = 2x^2 \).

5. Solve : \((D^2 - 2D + 2) \, y = e^x \cos 2 \, x \).

UNIT – II

6. Solve : \(x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + 2y = x \log x \).

7. Solve the system
\[
\begin{align*}
\frac{dx}{dt} &= x + y \\
\frac{dy}{dt} &= 4x + y.
\end{align*}
\]

P.T.O.
8. Find the Laplace transforms of
 \(e^{-t} \cos 2t \) and \(4e^{5t} + 6t^3 - 3 \sin 4t \).

9. Solve the equation \(y'(t) + y(t) = t, \ y(0) = 1, \ y'(0) = -2 \), using Laplace transforms.

UNIT – III

10. Prove that \(\Delta^n \sin (ax + h) = (2 \sin \frac{ah}{2})^n \sin \left[ax + h + \frac{n}{2} (ah + \pi) \right] \).

11. Prove that i) \(1 + \Delta = E \)

 ii) \(1 - \nabla = E^{-1} \).

12. The following data gives the melting point of an alloy of lead and zinc, where \(t \) is the temperature and \(p \) is the percentage of lead in the alloy.

<table>
<thead>
<tr>
<th>(p)</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)</td>
<td>226</td>
<td>250</td>
<td>276</td>
<td>304</td>
</tr>
</tbody>
</table>

Applying Newton’s interpolation formula, find the melting point of the alloy containing 84 percent of lead.

13. Apply Lagrange’s formula to find \(f(5) \) given that \(f(1) = 2, f(2) = 4, f(3) = 8, f(4) = 16, f(7) = 128 \).

UNIT – IV

14. Prove that \((\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = (\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{d}) - (\vec{a} \cdot \vec{d})(\vec{b} \cdot \vec{c}) \).

15. If \(|\vec{r}| = r \), where \(\vec{r} = xi + yj + zk \), prove that \(\nabla \vec{r} = \frac{\vec{r}}{r} \).

16. Find the directional derivative of the function \(2xy + z^2 \) in the direction of the vector \(\vec{i} + 2\vec{j} + 2\vec{k} \) at the point \((1, -1, 3)\).
17. Show that \(\mathbf{F} = (2xy + z^3)i + x^2j + 3xz^2k \) is a conservative force field. Find the scalar potential.

18. If \(\mathbf{F} \) is any vector point function, prove that \(\text{div} (\text{Curl} \, \mathbf{F}) = 0 \).

UNIT - V

19. Evaluate \(\int_C \mathbf{F} \cdot d\mathbf{r} \), where \(\mathbf{F} = x^2i + y^2j \) and \(C \) is the arc of the parabola \(y = x^2 \) in the \(xy \)-plane from \((0, 0)\) to \((1, 1)\).

20. Evaluate \(\iint_S \mathbf{F} \cdot \mathbf{n} \, ds \), where \(\mathbf{F} = 6z\mathbf{i} - 4\mathbf{j} + y\mathbf{k} \), where \(S \) is the portion of the plane \(2x + 3y + 6z = 12 \) in the first octant.

21. State Green’s Theorem.

22. Apply Stoke’s theorem to evaluate \(\int_C (y \, dx + z \, dy + x \, dz) \) where \(C \) is the curve of intersection of \(x^2 + y^2 + z^2 = a^2 \) and \(x + y = a \).