Q1. Insertion sort: takes $10n^2$ to sort n items. Merge Sort: takes $100 n \lg n$ to sort n items. Consider a faster computer A running *insertion sort* against a slower computer B running *merge sort*; Both must sort an array of one million ($n = 10^6$) numbers. Suppose computer A executes 10 billion (10^{10}) instructions per second. Computer B executes hundred million (10^8) instructions per second. So computer A is 100 times faster than computer B. Which computer will run the corresponding sorting program faster and by how much faster?

Solution:

To sort one million ($n = 10^6$) numbers:

Computer A takes $10 \cdot (10^6)^2 \text{ instr}/(10^{10} \text{ instr/second}) = 1000 \text{ seconds}$

Computer B takes $100 \cdot 10^6 \cdot \lg(10^6) \text{ instr}/(10^8 \text{ instr/second}) \approx 20 \text{ seconds}$

Computer **B** will run faster by $1000/20 = 50$ times

2. Algorithm P with the running time n^3 solves an instance of size 500 in 3 seconds. How long will it take for P to solve an instance of size 2000? Show your calculations.

Solution:

500^3 operations take 3 sec thus 2000^3 operations will take $3 \cdot 2000^3/500^3 = 3 \cdot 64 = 192$ seconds.
3. Illustrate the operation of MERGE-SORT on the array \(A = \langle 8, 21, 4, 3, 12, 1, 5, 7 \rangle \) (3 points)

6. Illustrate the operation of INSERTION-SORT on the array \(A = \langle 40, 15, 30, 5, 25, 10, 20, 35 \rangle \)
4. Consider the following code fragment:

```c++
for ( int i = 1; i <= n-1; i++ )
    for ( int j = 1; j <= n-1; j++ )
        cout << “Hello” << endl;
```

 a. How many “Hello”s are printed when \(n = 4? \) 9 times
 b. How many “Hello”s are printed in terms of \(n? \) \((n - 1) * (n - 1) \)
 c. How many “Hello”s are printed in \(O() \) notation? \(O(n^2) \)

13. Select the right rank of the following functions in order of growth. That is, find an arrangement \(f_1, f_2, ..., f_5 \) satisfying \(f_1 = O(f_2), f_2 = O(f_3), \) ... and so forth.

 a. \(\frac{1}{n} \leq \lg(n) \leq \lg(lg(n)) \leq \lg^2(n) \leq \frac{1}{(3^n)} \)
 b. \(\frac{1}{(3^n)} \leq \frac{1}{n} \leq \lg(lg(n)) \leq \lg(n) \leq \lg^2(n) \)
 c. \(\frac{1}{n} \leq \lg(lg(n)) \leq \lg(n) \leq \lg^2(n) \leq \frac{1}{(3^n)} \)
 d. \(\frac{1}{(3^n)} \leq \lg(lg(n)) \leq \frac{1}{n} \leq \lg(n) \leq \lg^2(n) \)
Q3. Choose the right answer:

a) \(n^2 \in O(n^3) \)

b) \(n^2 \in O(n) \)

c) \(n^2 \in O(n \lg n) \)

d) \(n^2 \in O(\lg n) \)

1. Solve the following recurrence by using iteration method.

\[
T(n) = \begin{cases}
1 & n = 0 \\
2T(n-1) & n > 0
\end{cases}
\]

Solution:

\[
T(n) = 2T(n-1) = 2^2 T(n-2) = 2^3 T(n-3) = \ldots = 2^k T(n-k)
\]

To stop the recursion, we should have \(n - k = 0 \) \(\Rightarrow \) \(k = n \)

\[
T(n) = 2^n T(n-n) = T(n) = 2^n T(0) = T(n) = 2^n
\]

2. Use the Master theorem to solve the this recurrence \(T(n) = 36 \ T(n/6) + n \)

Solution: (5 points)

\[
a = 36 \\
b = 6 \\
f(n) = n \\
n^{\log_b a} = n^2 \\
f(n) = O(n^{2+\varepsilon}) = O(n^{2.5}) = O(n^{1.5}), \quad \text{where} \ \varepsilon = 0.5
\]

Case \(\square \) \(\square \) applies, thus the solution is

\[
T(n) = O(n^2)
\]

6. In a full binary heap with \(n \) nodes, the number of internal nodes (non leaves) is:
a. \(n/2 \)
b. \((n + 1)/2 \)
c. \((n - 1)/2 \)
d. \((n - 1)/2 - 1 \)

8. The following sequence represents a max heap stored in an array: \(\langle 60, 40, 50, 35, 32, 30, 20, 34, 10, 25 \rangle \). What would be the content of the array after the 3rd iteration of the heap-sort algorithm (given below)?

\[
\text{Heapsort}(A)\{
1. \text{Build-Heap}(A)
2. for i \leftarrow \text{length}[A] \text{ downto } 2 \text{ do}
4. heap-size[A] \leftarrow heap-size[A] - 1
5. \text{Heapify}(A, 1)\}
\]

a. 35 34 30 10 32 25 20 40 50 60
b. 35 34 30 10 25 32 20 40 50 60
c. 60 50 40 35 32 30 20 34 10 25
d. 40 10 50 34 60 32 35 25 30 20