Lecture Outline

Finite Automata
 Formal Definition
 DFA Computation
 Regular Operations
Finite Automata

The *finite state machine* or *finite automaton* is the simplest computational model of limited memory computers.

Example: an automatic door opener at a supermarket decides when to open or close the door, depending on the input provided by its sensors.
Finite Automata

The *finite state machine* or *finite automaton* is the simplest computational model of limited memory computers.

Example: an automatic door opener at a supermarket decides when to open or close the door, depending on the input provided by its sensors.

Finite automata are designed to solve *decision problems*, i.e., to decide whether a given input satisfies certain conditions.

Examples of decision problems:

▶ does a given string have an even number of 1’s;
▶ is the number of 0’s (in a given string) multiple of 4;
▶ does a given string end in 00.
Example: Door Opener

states: closed, open

input conditions: front, rear, both, neither

nonloop transitions:
 closed \rightarrow open on front
 open \rightarrow closed on neither
Example: Door Opener

states: closed, open
input conditions: front, rear, both, neither
nonloop transitions:
 closed → open on front
 open → closed on neither
Formal Definition

Definition
A deterministic finite automaton (DFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- Q is a finite set whose members are called states,
- Σ is a finite alphabet whose members are called symbols,
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function,
- $q_0 \in Q$ is the start state, and
- $F \subseteq Q$ is the set of accept states (or final states).

DFA computation can be described informally using a tape, cells with symbols, and a finite-state control with a read head advancing over the input. Given an input string over Σ (written on the input tape), an automaton reads its symbols one-by-one and changes its state (starting from q_0) according to δ. The automaton “accepts” the input if its resulting state (after reading of the input string is complete) belongs to F; otherwise “rejects”.
What is what in Door Opener

Q: Is it a DFA?
What is what in Door Opener

This automaton is not a DFA since it supposedly operates infinitely long and thus there are no starting state q_0 and final states F defined. However, it does correspond to some Q, Σ, δ.

Recall that Q is a finite set whose members are called states. What are the states of the Door Opener?
This automaton is not a DFA since it supposedly operates infinitely long and thus there are no starting state q_0 and final states F defined. However, it does correspond to some Q, Σ, δ.

$$Q = \{\text{CLOSED, OPEN}\}$$
What is what in Door Opener

This automaton is not a DFA since it supposedly operates infinitely long and thus there are no starting state q_0 and final states F defined. However, it does correspond to some Q, Σ, δ.

Recall that Σ is a finite alphabet containing possible input symbols. What are they in the Door Opener?
What is what in Door Opener

This automaton is not a DFA since it supposedly operates infinitely long and thus there are no starting state q_0 and final states F defined. However, it does correspond to some Q, Σ, δ.

$$\Sigma = \{\text{FRONT, REAR, BOTH, NEITHER}\}$$
What is what in Door Opener

This automaton is not a DFA since it supposedly operates infinitely long and thus there are no starting state q_0 and final states F defined. However, it does correspond to some Q, Σ, δ.

Recall that transition function is a function $\delta : Q \times \Sigma \rightarrow Q$ defining how the automaton behaves.
What is what in Door Opener

This automaton is not a DFA since it supposedly operates infinitely long and thus there are no starting state q_0 and final states F defined. However, it does correspond to some Q, Σ, δ.

<table>
<thead>
<tr>
<th></th>
<th>FRONT</th>
<th>REAR</th>
<th>BOTH</th>
<th>NEITHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLOSED</td>
<td>OPEN</td>
<td>CLOSED</td>
<td>CLOSED</td>
<td>CLOSED</td>
</tr>
<tr>
<td>OPEN</td>
<td>OPEN</td>
<td>OPEN</td>
<td>OPEN</td>
<td>CLOSED</td>
</tr>
</tbody>
</table>
State Diagram of a DFA

- Nodes encode the states (elements of Q).
- Directed edges, labelled with symbols (elements of Σ), encode δ. Thus, each node has $|\Sigma|$ outgoing edges. Parallel edges can be combined into a single edge with multiple labels.
- An incoming edge from nowhere encodes the starting state.
- Nodes with double border encode accept states (elements of F).
Q: Draw a state diagram of a DFA M_1 with state set $Q = \{q_1, q_2, q_3\}$, alphabet $\Sigma = \{0, 1\}$, start state q_1, final state set $F = \{q_2\}$, and transition function δ given by the following table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>q_1</td>
<td>q_2</td>
</tr>
<tr>
<td>q_2</td>
<td>q_3</td>
<td>q_2</td>
</tr>
<tr>
<td>q_3</td>
<td>q_2</td>
<td>q_1</td>
</tr>
</tbody>
</table>

We start with drawing nodes (labeled with elements of Q), marking the starting and accepting states:
Drawing a State Diagram

Q: Draw a state diagram of a DFA M_1 with state set $Q = \{q_1, q_2, q_3\}$, alphabet $\Sigma = \{0, 1\}$, start state q_1, final state set $F = \{q_2\}$, and transition function δ given by the following table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>q_1</td>
<td>q_2</td>
</tr>
<tr>
<td>q_2</td>
<td>q_3</td>
<td>q_2</td>
</tr>
<tr>
<td>q_3</td>
<td>q_2</td>
<td>q_1</td>
</tr>
</tbody>
</table>

Then we draw outgoing edges (defined by δ) for the first node (q_1 is this example):

```
\begin{center}
\begin{tikzpicture}
    \node[state] (q1) at (0,0) {$q_1$};
    \node[state, fill=white, fill opacity=0.5] (q2) at (1,0) {$q_2$};
    \node[state, fill=white, fill opacity=0.5] (q3) at (2,0) {$q_3$};
    \path[->] (q1) edge [loop below] node {0} (q1);
    \path[->] (q1) edge node {1} (q2);
\end{tikzpicture}
\end{center}
```
Q: Draw a state diagram of a DFA M_1 with state set $Q = \{q_1, q_2, q_3\}$, alphabet $\Sigma = \{0, 1\}$, start state q_1, final state set $F = \{q_2\}$, and transition function δ given by the following table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>q_1</td>
<td>q_2</td>
</tr>
<tr>
<td>q_2</td>
<td>q_3</td>
<td>q_2</td>
</tr>
<tr>
<td>q_3</td>
<td>q_2</td>
<td>q_1</td>
</tr>
</tbody>
</table>

Similarly we draw outgoing edges for the other nodes and we are done:
Languages

Definition
Let Σ be an alphabet. We let Σ^* denote the set of all (finite) strings over Σ. A language over Σ is any subset of Σ^*, i.e., any set of strings over Σ.

We use languages to encode decision problems. Given an input (string), is the answer “yes” or “no”? Strings for which the answer is “yes” are called yes-instances and the others are no-instances. The language corresponding to a decision problem is the set of strings encoding yes-instances.
Recognizing DFA

Definition
Let M be a DFA with alphabet Σ and let $A \subseteq \Sigma^*$ be a language over Σ. We say that M recognizes A iff M accepts every string in A and rejects every string in $\overline{A} = \Sigma^* \setminus A$. We let $L(M)$ denote the language recognized by M.

Thus recognizing a language means being able to distinguish membership from nonmembership in the language, thus solving the corresponding decision problem. Every DFA recognizes a unique language (consisting of the strings it accept).
Q: Design a DFA recognizing the language \(B = \{ x \in \{0, 1\}^* | |x| \geq 2 \text{ and the 1st symbol of } x \text{ equals the last symbol of } x \} \).

In order to design such a DFA we need:

- to “record” the first symbol of the input (using states as the only available sort of memory);
- to distinguish whether the current symbol (that will be the last one at some point) matches the recorded first symbol;
- (at the end) accept if it does, reject otherwise.
DFA Computation

We now define a DFA computation formally.

Definition
Let \(M = (Q, \Sigma, \delta, q_0, F) \) be a DFA and let \(w \in \Sigma^* \) be a string over \(\Sigma \). Suppose \(w = w_1w_2 \cdots w_n \) where \(w_i \in \Sigma \) for all \(1 \leq i \leq n \). The computation of \(M \) on input \(w \) is the unique sequence of states \((s_0, s_1, \ldots, s_n)\) where

- each \(s_i \in Q \),
- \(s_0 = q_0 \), the start state, and
- \(s_i = \delta(s_{i-1}, w_i) \) for all \(1 \leq i \leq n \).

The computation \((s_0, \ldots, s_n)\) is accepting if \(s_n \in F \), and is rejecting otherwise. If the former holds, we say that \(M \) accepts \(w \), and if the latter holds, we say that \(M \) rejects \(w \).

Thus \(s_0, s_1, \ldots \) is the sequence of states that \(M \) goes through while reading \(w \) from left to right, starting with the start state.
Examples

Example: DFA that recognizes multiples of 3 in unary, binary.
Example: DFA that accepts strings over \{a, b, c\} containing \textit{abacab} as a substring. (Idea is useful for text search.)
Example: Strings over \{0, 1\} with an even number of 1s. Strings over \{0, 1\} with an even number of 1s or an odd number of 0s.

Definition

A language $A \subseteq \Sigma^*$ is \textit{regular} iff some DFA recognizes it, i.e., $A = L(M)$ for some DFA M.
Regular Operations

Let A and B be two languages. We define the following regular operations:

Union: $A \cup B = \{x \mid x \in A \lor x \in B\}$

Concatenation: $A \circ B = \{xy \mid x \in A \land y \in B\}$

Star: $A^* = \{x_1x_2 \ldots x_k \mid k \in \mathbb{Z} \land k \geq 0 \land \forall i = 1, 2, \ldots, k, \; x_i \in A\}$

Theorem

If A and B are regular languages then so are $A \cup B$ and $A \circ B$. In other words, the class of regular languages is closed under the union and concatenation operations.

Read proofs in Sipser pp.44-47.