Dr. Ahmed G. Abo-Khalil

Electrical Engineering Department

Anomaly detection

Anomaly detection


In data mininganomaly detection (or outlier detection) is the identification of items, events or observations which do not conform to an expected pattern or other items in a dataset.[1] Typically the anomalous items will translate to some kind of problem such as bank fraud, a structural defect, medical problems or finding errors in text. Anomalies are also referred to as outliers, novelties, noise, deviations and exceptions.[2]

In particular in the context of abuse and network intrusion detection, the interesting objects are often not rare objects, but unexpected bursts in activity. This pattern does not adhere to the common statistical definition of an outlier as a rare object, and many outlier detection methods (in particular unsupervised methods) will fail on such data, unless it has been aggregated appropriately. Instead, a cluster analysis algorithm may be able to detect the micro clusters formed by these patterns.

Office Hours

Monday 10 -2

Tuesday 10-12

Thursday 11-1

My Timetable


Contacts


email: [email protected]

[email protected]

Phone: 2570

Welcome

Welcome To Faculty of Engineering

Almajmaah University


IEEE


http://www.ieee.org/

/

Links of Interest


http://www.utk.edu/research/

http://science.doe.gov/grants/index.asp

http://www1.eere.energy.gov/vehiclesandfuels/

http://www.eere.energy.gov/


Travel Web Sites

http://www.hotels.com/

http://www.orbitz.com/

http://www.hotwire.com/us/index.jsp

http://www.kayak.com/

Blackboard

ستقام اختبارات الميدتيرم يوم الثلاثاء 26-6-1440

حسب الجدول المعلن بلوحات الاعلان

Summer training

The registration for summer training will start from 5th week of second semester

Academic advising

Class registration week 1

برنامج التجسير




إحصائية الموقع

عدد الصفحات: 2879

البحوث والمحاضرات: 1280

الزيارات: 65076