Dr. Ahmed G. Abo-Khalil

Electrical Engineering Department

Combined cycle

In electric power generation a combined cycle is an assembly of heat engines that work in tandem off the same source of heat, converting it into mechanical energy, which in turn usually drives electrical generators. The principle is that the exhaust of one heat engine is used as the heat source for another, thus extracting more useful energy from the heat, increasing the system's overall efficiency. This works because heat engines are only able to use a portion of the energy their fuel generates (usually less than 50%).

The remaining heat (e.g., hot exhaust fumes) from combustion is generally wasted. Combining two or more thermodynamic cycles results in improved overall efficiency, reducing fuel costs. In stationary power plants, a successful, common combination is the Brayton cycle (in the form of a turbine burning natural gas or synthesis gas from coal) and the Rankine cycle (in the form of a steam power plant). Multiple stage turbine or steam cylinders are also common.

Historically successful combined cycles have used hot cycles with mercury vapor turbines, magnetohydrodynamic generators or molten carbonate fuel cells, with steam plants for the low temperature bottoming cycle. Bottoming cycles operating from a steam condenser's heat are theoretically possible, but uneconomical because of the very large, expensive equipment needed to extract energy from the small temperature differences between condensing steam and outside air or water. However, it is common in cold climates (such as Finland) to drive community heating systems from a power plant's condenser heat. Such cogeneration systems can yield theoretical efficiencies above 95%.

In automotive and aeronautical engines, turbines have been driven from the exhausts of Otto and Diesel cycles. These are called turbo-compound engines. Aside from turbochargers, they have failed commercially because their mechanical complexity and weight are less economical than multistage turbines. Stirling engines are also a good theoretical fit for this application.

In a combined cycle power plant (CCPP), or combined cycle gas turbine (CCGT) plant, a gas turbine generator generates electricity, and the heat of its exhaust is used to make steam, which in turn drives a steam turbine to generate additional electricity. This last step enhances the efficiency of electricity generation, and combined-cycle plants can achieve efficiencies of 60%. Many new gas power plants in North America and Europe are of this type. Such an arrangement used for marine propulsion is called combined gas (turbine) and steam (turbine) (COGAS).

Office Hours

No office hours

My Timetable


email: [email protected]

[email protected]

Phone: 2570


Welcome To Faculty of Engineering

Almajmaah University




Links of Interest





Travel Web Sites






ستقام اختبارات الميدتيرم يوم الثلاثاء 26-6-1440

حسب الجدول المعلن بلوحات الاعلان

Summer training

The registration for summer training will start from 5th week of second semester

Academic advising

Class registration week 1

برنامج التجسير

إحصائية الموقع

عدد الصفحات: 2879

البحوث والمحاضرات: 1280

الزيارات: 99648