Dr. Ahmed G. Abo-Khalil

Electrical Engineering Department

Mainframe computer

Mainframe computers (colloquially referred to as "big iron") are powerful computers used primarily by corporate and governmental organizations for critical applications, bulk data processing such as census, industry and consumer statistics, enterprise resource planning, and transaction processing. The term originally referred to the large cabinets that housed the central processing unit and main memory of early computers. Later, the term was used to distinguish high-end commercial machines from less powerful units.[citation needed] Most large-scale computer system architectures were established in the 1960s, but continue to evolve.

Description

Most modern mainframe design is not so much defined by single task computational speed, typically defined as MIPS rate or FLOPS in the case of floating point calculations, as much as by their redundant internal engineering and resulting high reliability and security, extensive input-output facilities, strict backward compatibility with older software, and high hardware and computational utilization rates to support massive throughput. These machines often run for long periods of time without interruption, given their inherent high stability and reliability.

Software upgrades usually require setting up the operating system or portions thereof, and are non-disruptive only when using virtualizing facilities such as IBM's Z/OS and Parallel Sysplex, or Unisys' XPCL, which support workload sharing so that one system can take over another's application while it is being refreshed. Mainframes are defined by high availability, one of the main reasons for their longevity, since they are typically used in applications where downtime would be costly or catastrophic. The term reliability, availability and serviceability (RAS) is a defining characteristic of mainframe computers. Proper planning and implementation is required to exploit these features, and if improperly implemented, may serve to inhibit the benefits provided. In addition, mainframes are more secure than other computer types. The NIST National Institute of Standards and Technology vulnerabilities database, US-CERT, rates traditional mainframes such as IBM zSeries, Unisys Dorado and Unisys Libra as among the most secure with vulnerabilities in the low single digits as compared with thousands for Windows, Linux and Unix.[4]

In the 1960s, most mainframes had no explicitly interactive interface. They accepted sets of punched cards, paper tape, and/or magnetic tape and operated solely in batch mode to support back office functions, such as customer billing. Teletype devices were also common, for system operators, in implementing programming techniques. By the early 1970s, many mainframes acquired interactive user interfaces and operated as timesharing computers, supporting hundreds of users simultaneously along with batch processing. Users gained access through specialized terminals or, later, from personal computers equipped with terminal emulation software. By the 1980s, many mainframes supported graphical terminals, and terminal emulation, but not graphical user interfaces. This format of end-user computing reached mainstream obsolescence in the 1990s due to the advent of personal computers provided with GUIs. After 2000, most modern mainframes have partially or entirely phased out classic terminal access for end-users in favour of Web user interfaces.

Historically, mainframes acquired their name in part because of their substantial size, and because of requirements for specialized heating, ventilation, and air conditioning (HVAC), and electrical power, essentially posing a "main framework" of dedicated infrastructure. The requirements of high-infrastructure design were drastically reduced during the mid-1990s with CMOS mainframe designs replacing the older bipolar technology. IBM claimed that its newer mainframes can reduce data center energy costs for power and cooling, and that they could reduce physical space requirements compared to server farms.

Office Hours

Monday 10 -2

Tuesday 10-12

Thursday 11-1

My Timetable

Contacts


email: [email protected]

[email protected]

Phone: 2570

Welcome

Welcome To Faculty of Engineering

Almajmaah University

IEEE

Institute of Electrical and Electronics Engineers

http://www.ieee.org/

http://ieeexplore.ieee.org/Xplore/guesthome.jsp

http://ieee-ies.org/

http://www.ieee-pes.org/

http://www.pels.org/

Links of Interest

http://www.utk.edu/research/

http://science.doe.gov/grants/index.asp

http://www1.eere.energy.gov/vehiclesandfuels/

http://www.eere.energy.gov/


القران الكريم

http://quran.muslim-web.com/

Travel Web Sites

http://www.hotels.com/

http://www.orbitz.com/

http://www.hotwire.com/us/index.jsp

http://www.kayak.com/

Photovoltaic Operation


Wave Power

World's Simplest Electric Train



PeltierModule-JouleThief-Fridge

homemade Aircondition

Salt water battery


إحصائية الموقع

عدد الصفحات: 2880

البحوث والمحاضرات: 1292

الزيارات: 48166