Dr. Ahmed G. Abo-Khalil

Electrical Engineering Department

Radon–Nikodym deri

Radon–Nikodym derivativ


The function f satisfying the above equality is uniquely defined up to a μ-null set, that is, if g is another function which satisfies the same property, then f = g μ-almost everywhere. f is commonly written scriptstyle frac{d
u}{dmu} and is called the Radon–Nikodym derivative. The choice of notation and the name of the function reflects the fact that the function is analogous to a derivative in calculus in the sense that it describes the rate of change of density of one measure with respect to another (the way the Jacobian determinant is used in multivariable integration). A similar theorem can be proven for signed and complex measures: namely, that if μ is a nonnegative σ-finite measure, and ν is a finite-valued signed or complex measure such that ν ≪ μ, i.e. ν is absolutely continuous with respect to μ, then there is a μ-integrable real- or complex-valued function g on X such that for every measurable set A,


u(A) = int_A g , dmu.

Office Hours

Monday 10 -2

Tuesday 10-12

Thursday 11-1

My Timetable


Contacts


email: [email protected]

[email protected]

Phone: 2570

Welcome

Welcome To Faculty of Engineering

Almajmaah University


IEEE


http://www.ieee.org/

/

Links of Interest


http://www.utk.edu/research/

http://science.doe.gov/grants/index.asp

http://www1.eere.energy.gov/vehiclesandfuels/

http://www.eere.energy.gov/


Travel Web Sites

http://www.hotels.com/

http://www.orbitz.com/

http://www.hotwire.com/us/index.jsp

http://www.kayak.com/

Blackboard

ستقام اختبارات الميدتيرم يوم الثلاثاء 26-6-1440

حسب الجدول المعلن بلوحات الاعلان

Summer training

The registration for summer training will start from 5th week of second semester

Academic advising

Class registration week 1

برنامج التجسير




إحصائية الموقع

عدد الصفحات: 2879

البحوث والمحاضرات: 1280

الزيارات: 62355