Dr. Ahmed G. Abo-Khalil

Electrical Engineering Department

Semiconductor

A semiconductor has electrical conductivity intermediate in magnitude between that of a conductor and an insulator. This means a conductivity roughly in the range of 10-2 to 104 siemens per centimeter (S⋅cm-1). Semiconductors are the foundation of modern electronics, including radio, computers, and telephones. Semiconductor-based electronic components include transistors, solar cells, many kinds of diodes including the light-emitting diode (LED), the silicon controlled rectifier, photo-diodes, and digital and analog integrated circuits. Semiconductor solar photovoltaic panels directly convert light energy into electricity. In a metallic conductor, current is carried by the flow of electrons.

Common semiconducting materials are crystalline solids—chips, but amorphous and liquid semiconductors are also known. These include hydrogenated amorphous silicon and mixtures of arsenic, selenium and tellurium in a variety of proportions. Such compounds share with better known semiconductors intermediate conductivity and a rapid variation of conductivity with temperature, as well as occasional negative resistance. Such disordered materials lack the rigid crystalline structure of conventional semiconductors such as silicon and are generally used in thin film structures, which do not require material of higher electronic quality, being relatively insensitive to impurities and radiation damage. Organic semiconductors, that is, organic materials with properties resembling conventional semiconductors, are also known.

Silicon is used to create most semiconductors commercially. Dozens of other materials are used, including germanium, gallium arsenide, and silicon carbide. A pure semiconductor is often called an “intrinsic” semiconductor. The electronic properties and the conductivity of a semiconductor can be changed in a controlled manner by adding very small quantities of other elements, called “dopants”, to the intrinsic material. In crystalline silicon typically this is achieved by adding impurities of boron or phosphorus to the melt and then allowing it to solidify into the crystal. This process is called "doping" and the semiconductor is "extrinsic"

Office Hours

Monday 10 -2

Tuesday 10-12

Thursday 11-1

My Timetable

Contacts


email: [email protected]

[email protected]

Phone: 2570

Welcome

Welcome To Faculty of Engineering

Almajmaah University

IEEE

Institute of Electrical and Electronics Engineers

http://www.ieee.org/

http://ieeexplore.ieee.org/Xplore/guesthome.jsp

http://ieee-ies.org/

http://www.ieee-pes.org/

http://www.pels.org/

Links of Interest

http://www.utk.edu/research/

http://science.doe.gov/grants/index.asp

http://www1.eere.energy.gov/vehiclesandfuels/

http://www.eere.energy.gov/


القران الكريم

http://quran.muslim-web.com/

Travel Web Sites

http://www.hotels.com/

http://www.orbitz.com/

http://www.hotwire.com/us/index.jsp

http://www.kayak.com/

Photovoltaic Operation


Wave Power

World's Simplest Electric Train



PeltierModule-JouleThief-Fridge

homemade Aircondition

Salt water battery


إحصائية الموقع

عدد الصفحات: 2880

البحوث والمحاضرات: 1292

الزيارات: 49746