قانون بيرلامبرت
ينص القانون على وجود ارتباط لوغاريتمي بين نفاذية، T، الضوء خلال المادة وحاصل ضرب معامل امتصاص المادة، α، والمسافة التي يقطعها الضوء خلال المادة ℓ. ويمكن لمعامل الامتصاص بدوره أن يكون حاصل ضرب إماالامتصاصية المولية ε، وتركيز c للمواد الماصة في المادة، أو مساحة المقطع العرضي للامتصاص، σ، وكثافة (عدد) N جزيئات المادة الماصة.
في حالة السوائل تكتب هذه العلاقة بالشكل:
-
بينما تكتب في حالة الغازات، وخصوصًا بين الفيزيائيين من أجل المطيافية والطيفية الضوئية (spectrophotometry)، بالشكل التالي:
حيث I0 وI هي شدة قدرة الضوء الساقط قبل وبعد عبوره للمادة، بالترتيب.
يعبر عن النفاذية (transmission or transmissivity) بمصطلح الامتصاصية (absorbance) والذي يعرف بالنسبة للسوائل بالشكل:
بينما يعرّف عادة في الغازات بالشكل:
هذا يعني أن الامتصاصية تصيح بعلاقة خطية مع التركيز (أو رقم الكثافة للمواد الماصة) بحسب العلاقة:
و
لكلا الحالتين وبالترتيب.
وهكذا، إذا عرفت المسافة المقطوعة والامتصاصية المولية (أو مساحة مقطع الامتصاص)، وقيست الامتصاصية، يمكن استنتاج تركيز المادة (أو رقم كثافة المواد الماصة).
بالرغم من أن عدة من المعالات السابقة تستخدم كقانون بير لامبرت، إلا أن الاسم يجب أن يخص بالذات المعادلتين الأخيرتين. السبب تاريخي، وذلك لأن قانون لامبرت نص على أن الامتصاص يتناسب مع طول المسلك الضوئي، بينما نص قانون بير على أن الامتصاص يتناسب مع تركيز الجزيئات الماصة في المادة[2].
إذا تم التعبير عن التركيز كجزء مولي، أي بدون واحدة، فتأخذ عندها الامتصاصية المولية ε نفس واحدة معامل الامتصاص، أي مقلوب الطول cm−1. وعلى أية حال، إذا تم التعبير عن التركيز بالمول في واحدة الحجم، تستخدم من أجلالامتصاصية المولية ε واحدة L·mol−1·cm−1، وأحيانًا تحول الواحدة إلى mol−1 cm2.
-