# Antiderivative The slope field of ${displaystyle F(x)={frac {x^{3}}{3}}-{frac {x^{2}}{2}}-x+c}$ , showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.

In calculus, an antiderivativeprimitive functionprimitive integral or indefinite integral[Note 1] of a function f is a differentiable function F whose derivative is equal to the original function f. This can be stated symbolically as ${displaystyle F'=f}$ . The process of solving for antiderivatives is called antidifferentiation (or indefinite integration) and its opposite operation is called differentiation, which is the process of finding a derivative.

Antiderivatives are related to definite integrals through the fundamental theorem of calculus: the definite integral of a function over an interval is equal to the difference between the values of an antiderivative evaluated at the endpoints of the interval.

The discrete equivalent of the notion of antiderivative is antidifference.

## Example

The function ${displaystyle F(x)={frac {x^{3}}{3}}}$ is an antiderivative of ${displaystyle f(x)=x^{2}}$ , as the derivative of ${displaystyle {frac {x^{3}}{3}}}$ is ${displaystyle x^{2}}$ . As the derivative of a constant is zero${displaystyle x^{2}}$ will have an infinite number of antiderivatives, such as ${displaystyle {frac {x^{3}}{3}}}$ ${displaystyle {frac {x^{3}}{3}}+1}$ ${displaystyle {frac {x^{3}}{3}}-2}$ , etc. Thus, all the antiderivatives of ${displaystyle x^{2}}$ can be obtained by changing the value of c in ${displaystyle F(x)={frac {x^{3}}{3}}+c}$ , where c is an arbitrary constant known as the constant of integration. Essentially, the graphs of antiderivatives of a given function are vertical translations of each other; each graph's vertical location depending upon the value c.

In physics, the integration of acceleration yields velocity plus a constant. The constant is the initial velocity term that would be lost upon taking the derivative of velocity because the derivative of a constant term is zero. This same pattern applies to further integrations and derivatives of motion (position, velocity, acceleration, and so on).

## Uses and properties

Antiderivatives can be used to compute definite integrals, using the fundamental theorem of calculus: if F is an antiderivative of the integrablefunction f over the interval ${displaystyle [a,b]}$ , then:

${displaystyle int _{a}^{b}f(x),dx=F(b)-F(a).}$ Because of this, each of the infinitely many antiderivatives of a given function f is sometimes called the "general integral" or "indefinite integral" of f and is written using the integral symbol with no bounds:

${displaystyle int f(x),dx.}$ If F is an antiderivative of f, and the function f is defined on some interval, then every other antiderivative G of f differs from F by a constant: there exists a number c such that ${displaystyle G(x)=F(x)+c}$ for all xc is called the constant of integration. If the domain of F is a disjoint union of two or more (open) intervals, then a different constant of integration may be chosen for each of the intervals. For instance

${displaystyle F(x)={egin{cases}-{frac {1}{x}}+c_{1}quad x<0\-{frac {1}{x}}+c_{2}quad x>0end{cases}}}$ is the most general antiderivative of ${displaystyle f(x)=1/x^{2}}$ on its natural domain ${displaystyle (-infty ,0)cup (0,infty ).}$ Every continuous function f has an antiderivative, and one antiderivative F is given by the definite integral of f with variable upper boundary:

${displaystyle F(x)=int _{0}^{x}f(t),dt.}$ Varying the lower boundary produces other antiderivatives (but not necessarily all possible antiderivatives). This is another formulation of the fundamental theorem of calculus.

There are many functions whose antiderivatives, even though they exist, cannot be expressed in terms of elementary functions (like polynomialsexponential functionslogarithmstrigonometric functionsinverse trigonometric functions and their combinations). Examples of these are

${displaystyle int e^{-x^{2}},dx,qquad int sin x^{2},dx,qquad int {frac {sin x}{x}},dx,qquad int {frac {1}{ln x}},dx,qquad int x^{x},dx.}$ From left to right, the first four are the error function, the Fresnel function, the trigonometric integral, and the logarithmic integral function.

## Techniques of integration

Finding antiderivatives of elementary functions is often considerably harder than finding their derivatives. For some elementary functions, it is impossible to find an antiderivative in terms of other elementary functions. See the articles on elementary functions and nonelementary integral for further information.

There are various methods available:

• the linearity of integration allows us to break complicated integrals into simpler ones
• integration by substitution, often combined with trigonometric identities or the natural logarithm
• integration by parts to integrate products of functions
• Inverse function integration, a formula that expresses the antiderivative of the inverse ${displaystyle f^{-1}}$ of an invertible and continuous function ${displaystyle f}$ in terms of the antiderivative of ${displaystyle f}$ and of ${displaystyle f^{-1}}$ .
• the method of partial fractions in integration allows us to integrate all rational functions (fractions of two polynomials)
• the Risch algorithm
• when integrating multiple times, certain additional techniques can be used, see for instance double integrals and polar coordinates, the Jacobian and the Stokes' theorem
• if a function has no elementary antiderivative (for instance, ${displaystyle exp(-x^{2})}$ ), its definite integral can be approximated using numerical integration
• it is often convenient to algebraically manipulate the integrand such that other integration techniques, such as integration by substitution, may be used.
• to calculate the (n times) repeated antiderivative of a function fCauchy's formula is useful (cf. Cauchy formula for repeated integration):
${displaystyle int _{x_{0}}^{x}int _{x_{0}}^{x_{1}}dots int _{x_{0}}^{x_{n-1}}f(x_{n}),dx_{n}dots ,dx_{2},dx_{1}=int _{x_{0}}^{x}f(t){frac {(x-t)^{n-1}}{(n-1)!}},dt.}$ Computer algebra systems can be used to automate some or all of the work involved in the symbolic techniques above, which is particularly useful when the algebraic manipulations involved are very complex or lengthy. Integrals which have already been derived can be looked up in a table of integrals.

## Of non-continuous functions

Non-continuous functions can have antiderivatives. While there are still open questions in this area, it is known that:

• Some highly pathological functions with large sets of discontinuities may nevertheless have antiderivatives.
• In some cases, the antiderivatives of such pathological functions may be found by Riemann integration, while in other cases these functions are not Riemann integrable.

Assuming that the domains of the functions are open intervals:

• A necessary, but not sufficient, condition for a function f to have an antiderivative is that f have the intermediate value property. That is, if ${displaystyle [a,b]}$ is a subinterval of the domain of fand c is any real number between f(a) and f(b), then ${displaystyle f(c)=c}$ for some c between a and b. This is a consequence of Darboux's theorem.
• The set of discontinuities of f must be a meagre set. This set must also be an F-sigma set (since the set of discontinuities of any function must be of this type). Moreover, for any meagre F-sigma set, one can construct some function f having an antiderivative, which has the given set as its set of discontinuities.
• If f has an antiderivative, is bounded on closed finite subintervals of the domain and has a set of discontinuities of Lebesgue measure 0, then an antiderivative may be found by integration in the sense of Lebesgue. In fact, using more powerful integrals like the Henstock–Kurzweil integral, every function for which an antiderivative exists is integrable, and its general integral coincides with its antiderivative.
• If f has an antiderivative F on a closed interval ${displaystyle [a,b]}$ , then for any choice of partition ${displaystyle a=x_{0} , if one chooses sample points ${displaystyle x_{i}^{*}in [x_{i-1},x_{i}]}$ as specified by the mean value theorem, then the corresponding Riemann sum telescopes to the value ${displaystyle F(b)-F(a)}$ .
{displaystyle {egin{aligned}sum _{i=1}^{n}f(x_{i}^{*})(x_{i}-x_{i-1})&=sum _{i=1}^{n}[F(x_{i})-F(x_{i-1})]\&=F(x_{n})-F(x_{0})=F(b)-F(a)end{aligned}}} However if f is unbounded, or if f is bounded but the set of discontinuities of f has positive Lebesgue measure, a different choice of sample points ${displaystyle x_{i}^{*}}$ may give a significantly different value for the Riemann sum, no matter how fine the partition. See Example 4 below.

### Some examples

1. The function
${displaystyle f(x)=2xsin left({frac {1}{x}} ight)-cos left({frac {1}{x}} ight)}$ with ${displaystyle fleft(0 ight)=0}$ is not continuous at ${displaystyle x=0}$ but has the antiderivative

${displaystyle Fleft(x ight)=x^{2}sin left({frac {1}{x}} ight)}$ with ${displaystyle Fleft(0 ight)=0}$ . Since f is bounded on closed finite intervals and is only discontinuous at 0, the antiderivative F may be obtained by integration: ${displaystyle F(x)=int _{0}^{x}f(t),dt}$ .
2. The function
${displaystyle f(x)=2xsin left({frac {1}{x^{2}}} ight)-{frac {2}{x}}cos left({frac {1}{x^{2}}} ight)}$ with ${displaystyle fleft(0 ight)=0}$ is not continuous at ${displaystyle x=0}$ but has the antiderivative
${displaystyle F(x)=x^{2}sin left({frac {1}{x^{2}}} ight)}$ with ${displaystyle Fleft(0 ight)=0}$ . Unlike Example 1, f(x) is unbounded in any interval containing 0, so the Riemann integral is undefined.
3. If f(x) is the function in Example 1 and F is its antiderivative, and ${displaystyle {x_{n}}_{ngeq 1}}$ is a dense countable subset of the open interval ${displaystyle left(-1,1 ight)}$ , then the function
${displaystyle g(x)=sum _{n=1}^{infty }{frac {f(x-x_{n})}{2^{n}}}}$ has an antiderivative
${displaystyle G(x)=sum _{n=1}^{infty }{frac {F(x-x_{n})}{2^{n}}}.}$ The set of discontinuities of g is precisely the set ${displaystyle {x_{n}}_{ngeq 1}}$ . Since g is bounded on closed finite intervals and the set of discontinuities has measure 0, the antiderivative Gmay be found by integration.
4. Let ${displaystyle {x_{n}}_{ngeq 1}}$ be a dense countable subset of the open interval ${displaystyle left(-1,1 ight)}$ . Consider the everywhere continuous strictly increasing function
${displaystyle F(x)=sum _{n=1}^{infty }{frac {1}{2^{n}}}(x-x_{n})^{1/3}.}$ It can be shown that
${displaystyle F'(x)=sum _{n=1}^{infty }{frac {1}{3cdot 2^{n}}}(x-x_{n})^{-2/3}}$ for all values x where the series converges, and that the graph of F(x) has vertical tangent lines at all other values of x. In particular the graph has vertical tangent lines at all points in the set ${displaystyle {x_{n}}_{ngeq 1}}$ .

Moreover ${displaystyle Fleft(x ight)geq 0}$ for all x where the derivative is defined. It follows that the inverse function ${displaystyle G=F^{-1}}$ is differentiable everywhere and that

${displaystyle gleft(x ight)=G'left(x ight)=0}$ for all x in the set ${displaystyle {F(x_{n})}_{ngeq 1}}$ which is dense in the interval ${displaystyle left[Fleft(-1 ight),Fleft(1 ight) ight]}$ . Thus g has an antiderivative G. On the other hand, it can not be true that

${displaystyle int _{F(-1)}^{F(1)}g(x),dx=GF(1)-GF(-1)=2,}$ since for any partition of ${displaystyle left[Fleft(-1 ight),Fleft(1 ight) ight]}$ , one can choose sample points for the Riemann sum from the set ${displaystyle {F(x_{n})}_{ngeq 1}}$ , giving a value of 0 for the sum. It follows that g has a set of discontinuities of positive Lebesgue measure. Figure 1 on the right shows an approximation to the graph of g(x)where ${displaystyle {x_{n}=cos(n)}_{ngeq 1}}$ and the series is truncated to 8 terms. Figure 2 shows the graph of an approximation to the antiderivative G(x), also truncated to 8 terms. On the other hand if the Riemann integral is replaced by the Lebesgue integral, then Fatou's lemma or the dominated convergence theorem shows that g does satisfy the fundamental theorem of calculus in that context.
5. In Examples 3 and 4, the sets of discontinuities of the functions g are dense only in a finite open interval ${displaystyle left(a,b ight)}$ . However, these examples can be easily modified so as to have sets of discontinuities which are dense on the entire real line ${displaystyle (-infty ,infty )}$ . Let
${displaystyle lambda (x)={frac {a+b}{2}}+{frac {b-a}{pi }} an ^{-1}x.}$ Then ${displaystyle gleft(lambda (x) ight)lambda '(x)}$ has a dense set of discontinuities on ${displaystyle (-infty ,infty )}$ and has antiderivative ${displaystyle Gcdot lambda .}$ 6. Using a similar method as in Example 5, one can modify g in Example 4 so as to vanish at all rational numbers. If one uses a naive version of the Riemann integral defined as the limit of left-hand or right-hand Riemann sums over regular partitions, one will obtain that the integral of such a function g over an interval ${displaystyle left[a,b ight]}$ is 0 whenever a and b are both rational, instead of ${displaystyle Gleft(b ight)-Gleft(a ight)}$ . Thus the fundamental theorem of calculus will fail spectacularly.
7. A function which has an antiderivative may still fail to be Riemann integrable. The derivative of Volterra's function is an example.

### أهلاً ومرحباً بكم ## قسم الرياضيات ### التوقيت والتقويم

``` _time.start(["thetimenow"]);
```

```
```

```

```

### محرك بحث جوجل ```

```

### إعلانات 1- الاختبار الفصلى الثانى لمقرر التحليل العددى (يوم الاحد الموافق 3 / 7/ 1440 هـ)

2- الاختبار الفصلى الثانى لمقررحساب المتجهات (يوم الثلاثاء الموافق 5 / 7 / 1440 هـ)

### الساعات المكتبية الأثنين: 10 - 12

الثلاثاء: 8 - 10

الأربعاء: 8 - 10

### بعض الخدمات الإلكترونية لعمادة تقنية المعلومات ### آلة حاسبة

```

```

### التقويم الجامعى   ### إحصائية الموقع

عدد الصفحات: 256

البحوث والمحاضرات: 155

الزيارات: 127867