د. محمد مدحت موسى-Dr. Mohamed M. Mousa

أستاذ مشارك بقسم الرياضيات-Associate Professor of Mathematics

Range

Range (mathematics)

From Wikipedia, the free encyclopedia
Jump to navigationJump to search
 is a function from domain X to codomain Y. The yellow oval inside Y is the image of . Sometimes "range" refers to the image and sometimes to the codomain.

In mathematics, and more specifically in naive set theory, the range of a function refers to either the codomain or the image of the function, depending upon usage. Modern usage almost always uses range to mean image.

The codomain of a function is some arbitrary super-set of image. In real analysis, it is the real numbers. In complex analysis, it is the complex numbers.

The image of a function is the set of all outputs of the function. The image is always a subset of the codomain.

Distinguishing between the two uses[edit]

As the term "range" can have different meanings, it is considered a good practice to define it the first time it is used in a textbook or article.

Older books, when they use the word "range", tend to use it to mean what is now called the codomain.[1][2] More modern books, if they use the word "range" at all, generally use it to mean what is now called the image.[3] To avoid any confusion, a number of modern books don't use the word "range" at all.[4]

As an example of the two different usages, consider the function  as it is used in real analysis, that is, as a function that inputs a real number and outputs its square. In this case, its codomain is the set of real numbers , but its image is the set of non-negative real numbers , since  is never negative if  is real. For this function, if we use "range" to mean codomain, it refers to . When we use "range" to mean image, it refers to .

As an example where the range equals the codomain, consider the function , which inputs a real number and outputs its double. For this function, the codomain and the image are the same (the function is a surjection), so the word range is unambiguous; it is the set of all real numbers.

Formal definition[edit]

When "range" is used to mean "codomain", the image of a function f is already implicitly defined. It is (by definition of image) the (maybe trivial) subset of the "range" which equals {y | there exists an x in the domain of f such that y = f(x)}.

When "range" is used to mean "image", the range of a function f is by definition {y | there exists an x in the domain of f such that y = f(x)}. In this case, the codomain of f must not be specified, because any codomain which contains this image as a (maybe trivial) subset will work.

In both cases, image f ⊆ range f ⊆ codomain f, with at least one of the containments being equality.

See also[edit]

Notes[edit]

  1. ^ Hungerford 1974, page 3.
  2. ^ Childs 1990, page 140.
  3. ^ Dummit and Foote 2004, page 2.
  4. ^ Rudin 1991, page 99.

References[edit]


جامعة المجمعة

أهلاً ومرحباً بكم

كلية العلوم والدراسات الإنسانية

بحوطة سدير

قسم الرياضيات

التوقيت والتقويم





 








توقيت الصلاة بمدينة حوطة سدير


محرك بحث جوجل

للتواصل


  1. الهاتف : 0164044771

تحويلة: 4771


mm.mousa@mu.edu.sa

dr.eng.mmmm@gmail.com

(QR Code)

mailto:mm.mousa@mu.edu.sa


إعلانات

1- الاختبار الفصلى الثانى لمقرر التحليل العددى (يوم الاحد الموافق 3 / 7/ 1440 هـ)

2- الاختبار الفصلى الثانى لمقررحساب المتجهات (يوم الثلاثاء الموافق 5 / 7 / 1440 هـ)

الساعات المكتبية

الأثنين: 10 - 12

الثلاثاء: 8 - 10

الأربعاء: 8 - 10

أخبار الجامعة والكلية

أخبار الجامعة

أخبار الكلية


اللوائح الطلابية بجامعة المجمعة

روابط مفيدة على موقع الجامعة












مواقع التواصل الإجتماعى

آلة حاسبة

التقويم الجامعى

التقويم الجامعى 1440/1439




بعض الجوائز والتكريمات









إحصائية الموقع

عدد الصفحات: 258

البحوث والمحاضرات: 155

الزيارات: 64212