د. محمد مدحت موسى-Dr. Mohamed M. Mousa

أستاذ مشارك بقسم الرياضيات-Associate Professor of Mathematics

Solid of revolution

Solid of revolution

From Wikipedia, the free encyclopedia
Jump to navigationJump to search
Rotating a curve. The surface formed is a surface of revolution; it encloses a solid of revolution.
File:Revolução de poliedros 03.webm
Solids of revolution (Matemateca Ime-Usp)

In mathematicsengineering, and manufacturing, a solid of revolution is a solid figure obtained by rotating a plane curve around some straight line (the axis of revolution) that lies on the same plane.

Assuming that the curve does not cross the axis, the solid's volume is equal to the length of the circle described by the figure's centroidmultiplied by the figure's area (Pappus's second centroid Theorem).

representative disk is a three-dimensional volume element of a solid of revolution. The element is created by rotating a line segment (of length w) around some axis (located r units away), so that a cylindrical volume of πr2w units is enclosed.

Finding the volume[edit]

Two common methods for finding the volume of a solid of revolution are the disc method and the shell method of integration. To apply these methods, it is easiest to draw the graph in question; identify the area that is to be revolved about the axis of revolution; determine the volume of either a disc-shaped slice of the solid, with thickness δx, or a cylindrical shell of width δx; and then find the limiting sum of these volumes as δx approaches 0, a value which may be found by evaluating a suitable integral.

Disk method[edit]

Disk integration about the y-axis

The disk method is used when the slice that was drawn is perpendicular to the axis of revolution; i.e. when integrating parallel to the axis of revolution.

The volume of the solid formed by rotating the area between the curves of f(x) and g(x) and the lines x = a and x = b about the x-axis is given by

If g(x) = 0 (e.g. revolving an area between the curve and the x-axis), this reduces to:

The method can be visualized by considering a thin horizontal rectangle at y between f(y) on top and g(y) on the bottom, and revolving it about the y-axis; it forms a ring (or disc in the case that g(y) = 0), with outer radius f(y) and inner radius g(y). The area of a ring is π(R2 − r2), where R is the outer radius (in this case f(y)), and r is the inner radius (in this case g(y)). The volume of each infinitesimal disc is therefore πf(y)2 dy. The limit of the Riemann sum of the volumes of the discs between a and b becomes integral (1).

Cylinder method[edit]

Shell integration
Solid of revolution demonstration
five coloured polyhedra mounted on vertical axes
The shapes at rest
five solids of rotation formed by rotating polyhedra
The shapes in motion, showing the solids of revolution formed by each

The cylinder method is used when the slice that was drawn is parallel to the axis of revolution; i.e. when integrating perpendicular to the axis of revolution.

The volume of the solid formed by rotating the area between the curves of f(x) and g(x) and the lines x = a and x = b about the y-axis is given by

If g(x) = 0 (e.g. revolving an area between curve and y-axis), this reduces to:

The method can be visualized by considering a thin vertical rectangle at x with height f(x) − g(x), and revolving it about the y-axis; it forms a cylindrical shell. The lateral surface area of a cylinder is rh, where r is the radius (in this case x), and h is the height (in this case f(x) − g(x)). Summing up all of the surface areas along the interval gives the total volume.

Parametric form[edit]

Mathematics and art: study of a vase as a solid of revolution by Paolo Uccello. 15th century

When a curve is defined by its parametric form (x(t),y(t)) in some interval [a,b], the volumes of the solids generated by revolving the curve around the x-axis or the y-axis are given by[1]

Under the same circumstances the areas of the surfaces of the solids generated by revolving the curve around the x-axis or the y-axis are given by[2]

See also[edit]

Notes[edit]

  1. ^ Sharma, A. K. (2005). Application Of Integral Calculus. Discovery Publishing House. p. 168. ISBN 81-7141-967-4.
  2. ^ Singh, Ravish R. (1993). Engineering Mathematics (6th ed.). Tata McGraw-Hill. p. 6.90. ISBN 0-07-014615-2.

References[edit]


جامعة المجمعة

أهلاً ومرحباً بكم

كلية العلوم والدراسات الإنسانية

بحوطة سدير

قسم الرياضيات

التوقيت والتقويم





 








توقيت الصلاة بمدينة حوطة سدير


محرك بحث جوجل

للتواصل


  1. الهاتف : 0164044771

تحويلة: 4771


mm.mousa@mu.edu.sa

dr.eng.mmmm@gmail.com

(QR Code)

mailto:mm.mousa@mu.edu.sa


إعلانات

1- الاختبار الفصلى الثانى لمقرر التحليل العددى (يوم الاحد الموافق 3 / 7/ 1440 هـ)

2- الاختبار الفصلى الثانى لمقررحساب المتجهات (يوم الثلاثاء الموافق 5 / 7 / 1440 هـ)

الساعات المكتبية

الأثنين: 10 - 12

الثلاثاء: 8 - 10

الأربعاء: 8 - 10

أخبار الجامعة والكلية

أخبار الجامعة

أخبار الكلية


اللوائح الطلابية بجامعة المجمعة

روابط مفيدة على موقع الجامعة












مواقع التواصل الإجتماعى

آلة حاسبة

التقويم الجامعى

التقويم الجامعى 1440/1439




بعض الجوائز والتكريمات









إحصائية الموقع

عدد الصفحات: 258

البحوث والمحاضرات: 155

الزيارات: 68003