Eclogite
Eclogite
Eclogite ( /ˈɛklədʒaɪt/) is a mafic (basaltic in composition) metamorphic rock; "mafic eclogite" is redundant. Eclogite is of special interest for at least two reasons. First, it forms at pressures greater than those typical of thecrust of the Earth. Second, being unusually dense rock, eclogite can play an important role in driving convectionwithin the solid Earth.
The fresh rock can be striking in appearance, with red to pink garnet (almandine-pyrope) in a green matrix ofsodium-rich pyroxene (omphacite). Accessory minerals include kyanite, rutile, quartz, lawsonite, coesite,amphibole, phengite, paragonite, zoisite, dolomite, corundum, and, rarely, diamond. Plagioclase is not stable in eclogite.
Origins
Eclogite typically results from high-pressure metamorphism of mafic igneous rock (typically basalt or gabbro) as it plunges into the mantle in a subduction zone. Such eclogites are generally formed from precursor mineral assemblages typical of blueschist-facies or amphibolite-facies metamorphism. Eclogite can also form from magmas that crystallize and cool within the mantle or lower crust.
[edit]
Eclogite facies
Eclogite facies is determined by the temperatures and pressures required to metamorphose basaltic rocks to an eclogite assemblage. The typical eclogite mineral assemblage is garnet (pyrope to almandine) plus clinopyroxene (omphacite).
Eclogites record pressures in excess of 1.2 GPa (45 km depth) at >400–1000 °C and usually in excess of 600-650 °C. This is high-pressure, medium- to high-temperature metamorphism. Diamond and coesite occur as trace constituents in some eclogites and record particularly high pressures. In fact, such ultrahigh-pressure (UHP) metamorphism has been defined as metamorphism within the eclogite facies but at pressures greater than those of the quartz-coesite transition (the two minerals have the same composition—silica). Some UHP rocks appear to record burial at depths greater than 150 km.
Eclogites containing lawsonite (a hydrous calcium-aluminium silicate) are rarely exposed at Earth's surface, although they are predicted from experiments and thermal models to form during normal subduction of oceanic crust at depths between ~ 45-300 kilometers[1]. The rarity of lawsonite eclogites therefore does not reflect unusual formation conditions but unusual exhumation processes. Lawsonite eclogite is known from the U.S. (Franciscan Complex of California; xenoliths in Arizona); Guatemala (Motagua fault zone), Corsica, Australia, the Dominican Republic, Canada (British Columbia), and Turkey.
Eclogite is the highest pressure metamorphic facies and is usually the result of advancement from blueschist metamorphic conditions.
[edit]
Importance of eclogite
Eclogite is a rare and important rock because it is formed only by conditions typically found in the mantle or the lowermost part of thickened crust.
Eclogites are helpful in elucidating patterns and processes of plate tectonics because many represent oceanic crust that has been subducted to depths in excess of 35 km and then returned to the surface.
Eclogite that is brought to shallow conditions is unstable, and retrograde metamorphism often occurs: secondary amphibole andplagioclase may form reaction rims on the primary pyroxene or garnet, and titanite may form rims about rutile. Eclogite may completely retrogress to amphibolite or granulite during exhumation. In some retrogressed eclogites and accompanying more silica-rich rocks, UHP (ultrahigh-pressure) metamorphism has been recognized only because of the preservation of coesite and/or diamond inclusions within trace minerals such as zircon and titanite.
Xenoliths of eclogite occur in kimberlite pipes of Africa, Russia, Canada, and elsewhere. Eclogites in granulite terranes are known from the Musgrave Block of central Australia where a continental collision took place at 550-530 Ma, resulting in burial of rocks to >45 km (15 kilobars) and rapid (in less than 10 million years!) exhumation via thrust faults prevented significant melting. Felsic rocks in these terranes contain sillimanite, kyanite, coesite, orthoclase and pyroxene, and are rare, peculiar rocks formed by an unusual tectonic event.