Rill
Rill
An erosion process in which many small channels a few centimetres deep are formed; it occurs mainly on recently cultivated soils
Formation of Rills
Rills are created when water erodes the topsoil on hillsides, and so, are significantly affected by seasonal weather patterns. They tend to appear more often in rainier months. Rills begin to form when the runoff shear stress, the ability of surface runoff to detach soil particles, overcomes the soil’s shear strength, the ability of soil to resist force working parallel to the soil’s surface. This begins the erosion process as water breaks soil particles free and carries them down the slope. These forces explain why sandy, loamy soils are especially susceptible to the formation of rills, whereas dense clays tend to resist rill formation].
Rills cannot form on every surface, and their formation is intrinsically connected to the steepness of the hillside slope. Gravity determines the force of the water, which provides the power required to start the erosional environment necessary to create rills. Therefore, the formation of rills is primarily controlled by the slope of the hillside. Slope controls the depth of the rills, while the length of the slope and the soil’s permeability control the number of incisions in an area. Each type of soil has a threshold value, a slope angle below which water velocity cannot produce sufficient force to dislodge enough soil particles for rills to form. For instance, on many non-cohesive slopes, this threshold value hovers around an angle of 2 degrees with a shear velocity between 3 and 3.5 cm/s].
After rills begin forming, they are subjected to variety of other erosional forces which may increase their size and output volume. Up to 37% of erosion in a rill-ridden area may derive from mass movement, or collapse, of rill sidewalls. As water flows through a rill, it will undercut into the walls, triggering collapse. Also, as water seeps into the soil of the walls, they weaken, amplifying the chance of wall collapse. The erosion created by these forces increases the size of the rill while also swelling its output volume